Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (205)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587369

RESUMO

Over the recent decades, the development of animal models allowed us to better understand various pathologies and identify new treatments. Hemorrhagic shock, i.e., organ failure due to rapid loss of a large volume of blood, is associated with a highly complex pathophysiology involving several pathways. Numerous existing animal models of hemorrhagic shock strive to replicate what happens in humans, but these models have limits in terms of clinical relevance, reproducibility, or standardization. The aim of this study was to refine these models to develop a new model of hemorrhagic shock. Briefly, hemorrhagic shock was induced in male Wistar Han rats (11-13 weeks old) by a controlled exsanguination responsible for a drop in the mean arterial pressure. The next phase of 75 min was to maintain a low mean arterial blood pressure, between 32 mmHg and 38 mmHg, to trigger the pathophysiological pathways of hemorrhagic shock. The final phase of the protocol mimicked patient care with an administration of intravenous fluids, Ringer Lactate solution, to elevate the blood pressure. Lactate and behavioral scores were assessed 16 h after the protocol started, while hemodynamics parameters and plasmatic markers were evaluated 24 h after injury. Twenty-four hours post-hemorrhagic shock induction, the mean arterial and diastolic blood pressure were decreased in the hemorrhagic shock group (p < 0.05). Heart rate and systolic blood pressure remained unchanged. All organ damage markers were increased with the hemorrhagic shock (p < 0.05). The lactatemia and behavioral scores were increased compared to the sham group (p < 0.05). In conclusion, we demonstrated that the protocol described here is a relevant model of hemorrhagic shock that can be used in subsequent studies, particularly to evaluate the therapeutic potential of new molecules.


Assuntos
Choque Hemorrágico , Ratos , Masculino , Humanos , Animais , Ratos Wistar , Reprodutibilidade dos Testes , Ressuscitação/métodos , Soluções Isotônicas/uso terapêutico , Lactatos , Modelos Animais de Doenças
2.
Epigenetics Chromatin ; 16(1): 49, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38093337

RESUMO

Histones display a wide variety of post-translational modifications, including acetylation, methylation, and phosphorylation. These epigenetic modifications can influence chromatin structure and function without altering the DNA sequence. Histones can also undergo post-translational O-GlcNAcylation, a rather understudied modification that plays critical roles in almost all biological processes and is added and removed by O-linked N-acetylglucosamine transferase and O-GlcNAcase, respectively. This review provides a current overview of our knowledge of how O-GlcNAcylation impacts the histone code both directly and by regulating other chromatin modifying enzymes. This highlights the pivotal emerging role of O-GlcNAcylation as an essential epigenetic marker.


Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Histonas/metabolismo , Cromatina , Epigênese Genética , Fosforilação
3.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37108501

RESUMO

In clinical practice, extracorporeal circulation (ECC) is associated with coagulopathy and inflammation, eventually leading to organ injuries without preventive systemic pharmacological treatment. Relevant models are needed to reproduce the pathophysiology observed in humans and preclinical tests. Rodent models are less expensive than large models but require adaptations and validated comparisons to clinics. This study aimed to develop a rat ECC model and to establish its clinical relevance. One hour of veno-arterial ECC or a sham procedure were achieved on mechanically ventilated rats after cannulations with a mean arterial pressure objective > 60 mmHg. Five hours post-surgery, the rats' behavior, plasmatic/blood biomarkers, and hemodynamics were measured. Blood biomarkers and transcriptomic changes were compared in 41 patients undergoing on-pump cardiac surgery. Five hours post-ECC, the rats presented hypotension, hyperlactatemia, and behavioral alterations. The same patterns of marker measurements (Lactate dehydrogenase, Creatinine kinase, ASAT, ALAT, and Troponin T) were observed in both rats and human patients. Transcriptome analyses showed similarity in both humans and rats in the biological processes involved in the ECC response. This new ECC rat model seems to resemble both ECC clinical procedures and the associated pathophysiology, but with early organ injury corresponding to a severe phenotype. Although the mechanisms at stake in the post-ECC pathophysiology of rats or humans need to be described, this new rat model appears to be a relevant and costless preclinical model of human ECC.


Assuntos
Circulação Extracorpórea , Insuficiência de Múltiplos Órgãos , Ratos , Humanos , Animais , Circulação Extracorpórea/métodos , Biomarcadores
4.
Cells ; 12(7)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37048125

RESUMO

Sepsis is a life-threatening disease defined as an organ dysfunction caused by a dysregulated host response to an infection. Early diagnosis and prognosis of sepsis are necessary for specific and timely treatment. However, no predictive biomarkers or therapeutic targets are available yet, mainly due to the lack of a pertinent model. A better understanding of the pathophysiological mechanisms associated with sepsis will allow for earlier and more appropriate management. For this purpose, experimental models of sepsis have been set up to decipher the progression and pathophysiology of human sepsis but also to identify new biomarkers or therapeutic targets. These experimental models, although imperfect, have mostly been performed on a murine model. However, due to the different pathophysiology of the species, the results obtained in these studies are difficult to transpose to humans. This underlines the importance of identifying pertinent situations to improve patient care. As humans, horses have the predisposition to develop sepsis spontaneously and may be a promising model for spontaneous sepsis. This review proposes to give first an overview of the different animal species used to model human sepsis, and, secondly, to focus on adult equine sepsis as a spontaneous model of sepsis and its potential implications for human and veterinary medicine.


Assuntos
Sepse , Humanos , Animais , Cavalos , Adulto , Camundongos , Sepse/veterinária , Sepse/complicações , Biomarcadores , Diagnóstico Precoce
5.
Int J Biochem Cell Biol ; 151: 106289, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36031106

RESUMO

O-GlcNAcylation is a post-translational modification which affects approximately 5000 human proteins. Its involvement has been shown in many if not all biological processes. Variations in O-GlcNAcylation levels can be associated with the development of diseases. Deciphering the role of O-GlcNAcylation is an important issue to (i) understand its involvement in pathophysiological development and (ii) develop new therapeutic strategies to modulate O-GlcNAc levels. Over the past 30 years, despite the development of several approaches, knowledge of its role and regulation have remained limited. This review proposes an overview of the currently available tools to study O-GlcNAcylation and identify O-GlcNAcylated proteins. Briefly, we discuss pharmacological modulators, methods to study O-GlcNAcylation levels and approaches for O-GlcNAcylomic profiling. This review aims to contribute to a better understanding of the methods used to study O-GlcNAcylation and to promote efforts in the development of new strategies to explore this promising modification.


Assuntos
Acetilglucosamina , Processamento de Proteína Pós-Traducional , Acetilglucosamina/metabolismo , Glicosilação , Humanos , Proteínas/metabolismo
6.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742875

RESUMO

The young population, which is particularly at risk of sepsis, is, paradoxically, rarely studied. Acute stimulation of O-GlcNAcylation, a post-translational modification involved in metabolic regulation, cell survival and stress response, is beneficial in young rats with sepsis. Considering that sepsis impacts the gene expression profile and that O-GlcNAcylation is a regulator of transcription, the aims of this study are to (i) unveil beneficial mechanisms of O-GlcNAcylation and (ii) decipher the relationship between O-GlcNAcylation and transcription during sepsis. Endotoxemic challenge was induced in 28-day-old male rats using a lipopolysaccharide injection (E. coli O111:B4, 20 mg·kg−1) and compared to control rats (NaCl 0.9%). One hour after, rats were assigned to no therapy or fluidotherapy (NaCl 0.9%, 10 mL.kg−1) ± NButGT (10 mg·kg−1) to stimulate O-GlcNAc levels. Cardiac O-GlcNAcylation levels were evaluated via Western blot and gene transcription using 3' SRP analysis. Lipopolysaccharide injection favorizes inflammatory state with the overexpression of genes involved in the NF-κB, JAK/STAT and MAPK pathways. NButGT treatment increased cardiac O-GlcNAcylation levels (p < 0.05). Yet, the mRNA expression was not impacted two hours after fluidotherapy or NButGT treatment. In conclusion, O-GlcNAc stimulation-induced beneficial effects are not dependent on the gene expression profile at the early phase of sepsis.


Assuntos
Lipopolissacarídeos , Sepse , Acetilglucosamina/metabolismo , Animais , Escherichia coli/metabolismo , Expressão Gênica , Lipopolissacarídeos/metabolismo , Masculino , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Ratos , Sepse/genética , Sepse/terapia , Cloreto de Sódio/metabolismo
7.
Oxid Med Cell Longev ; 2022: 7377877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633883

RESUMO

50% of patients with heart failure have a preserved ejection fraction (HFpEF). Numerous studies have investigated the pathophysiological mechanisms of HFpEF and have shown that endothelial dysfunction plays an important role in HFpEF. Yet no studies answered whether endothelial dysfunction could be the cause or is the consequence of HFpEF. Recently, we have shown that the endothelial overexpression of human ß 3-adrenoreceptor (Tgß 3) in rats leads to the slow development of diastolic dysfunction over ageing. The aim of the study is to decipher the involvement of endothelial dysfunction in the HFpEF development. For that, we investigated endothelial and cardiac function in 15-, 30-, and 45-week-old wild-type (WT) and Tgß 3 rats. The aortic expression of • NO synthase (NOS) isoforms was evaluated by Western blot. Finally, electron paramagnetic resonance measurements were performed on aortas to evaluate • NO and O2 •- production. Vascular reactivity was altered as early as 15 weeks of age in response to isoproterenol in Tgß 3 aortas and mesenteric arteries. NOS1 (neuronal NOS) expression was higher in the Tgß 3 aorta at 30 and 45 weeks of age (30 weeks: WT: 1.00 ± 0.21; Tgß 3: 6.08 ± 2.30; 45 weeks: WT: 1.00 ± 0.12; Tgß 3: 1.55 ± 0.17; p < 0.05). Interestingly, the endothelial NOS (NOS3) monomer form is increased in Tgß 3 rats at 45 weeks of age (ratio NOS3 dimer/NOS3 monomer; WT: 1.00 ± 0.37; Tgß 3: 0.13 ± 0.05; p < 0.05). Aortic •NO production was increased by NOS2 (inducible NOS) at 15 weeks of age in Tgß 3 rats (+52% vs. WT). Aortic O2 •- production was increased in Tgß 3 rats at 30 and 45 weeks of age (+75% and+76%, respectively, vs. WT, p < 0.05). We have shown that endothelial dysfunction and oxidative stress are present as early as 15 weeks of age and therefore conclude that endothelial dysfunction could be a cause of HFpEF development.


Assuntos
Insuficiência Cardíaca , Doenças Vasculares , Animais , Aorta/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Ratos , Volume Sistólico , Função Ventricular Esquerda
8.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502162

RESUMO

Sepsis in the young population, which is particularly at risk, is rarely studied. O-GlcNAcylation is a post-translational modification involved in cell survival, stress response and metabolic regulation. O-GlcNAc stimulation is beneficial in adult septic rats. This modification is physiologically higher in the young rat, potentially limiting the therapeutic potential of O-GlcNAc stimulation in young septic rats. The aim is to evaluate whether O-GlcNAc stimulation can improve sepsis outcome in young rats. Endotoxemic challenge was induced in 28-day-old rats by lipopolysaccharide injection (E. Coli O111:B4, 20 mg·kg-1) and compared to control rats (NaCl 0.9%). One hour after lipopolysaccharide injection, rats were randomly assigned to no therapy, fluidotherapy (NaCl 0.9%, 10 mL·kg-1) ± NButGT (10 mg·kg-1) to increase O-GlcNAcylation levels. Physiological parameters and plasmatic markers were evaluated 2h later. Finally, untargeted mass spectrometry was performed to map cardiac O-GlcNAcylated proteins. Lipopolysaccharide injection induced shock with a decrease in mean arterial pressure and alteration of biological parameters (p < 0.05). NButGT, contrary to fluidotherapy, was associated with an improvement of arterial pressure (p < 0.05). ATP citrate lyase was identified among the O-GlcNAcylated proteins. In conclusion, O-GlcNAc stimulation improves outcomes in young septic rats. Interestingly, identified O-GlcNAcylated proteins are mainly involved in cellular metabolism.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetilglucosamina/metabolismo , Processamento de Proteína Pós-Traducional , Choque Séptico/metabolismo , Acetilação , Animais , Hidratação/métodos , Lipopolissacarídeos/toxicidade , Ratos , Choque Séptico/etiologia , Choque Séptico/terapia
9.
Acta Physiol (Oxf) ; 231(3): e13566, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022862

RESUMO

AIM: Metabolic sources switch from carbohydrates in utero, to fatty acids after birth and then a mix once adults. O-GlcNAcylation (O-GlcNAc) is a post-translational modification considered as a nutrient sensor. The purpose of this work was to assess changes in protein O-GlcNAc levels, regulatory enzymes and metabolites during the first periods of life and decipher the impact of O-GlcNAcylation on cardiac proteins. METHODS: Heart, brain and liver were harvested from rats before and after birth (D-1 and D0), in suckling animals (D12), after weaning with a standard (D28) or a low-carbohydrate diet (D28F), and adults (D84). O-GlcNAc levels and regulatory enzymes were evaluated by western blots. Mass spectrometry (MS) approaches were performed to quantify levels of metabolites regulating O-GlcNAc and identify putative cardiac O-GlcNAcylated proteins. RESULTS: Protein O-GlcNAc levels decrease drastically and progressively from D-1 to D84 (13-fold, P < .05) in the heart, whereas the changes were opposite in liver and brain. O-GlcNAc levels were unaffected by weaning diet in any tissues. Changes in expression of enzymes and levels of metabolites regulating O-GlcNAc were tissue-dependent. MS analyses identified changes in putative cardiac O-GlcNAcylated proteins, namely those involved in the stress response and energy metabolism, such as ACAT1, which is only O-GlcNAcylated at D0. CONCLUSION: Our results demonstrate that protein O-GlcNAc levels are not linked to dietary intake and regulated in a time and tissue-specific manner during postnatal development. We have identified by untargeted MS putative proteins with a particular O-GlcNAc signature across the development process suggesting specific role of these proteins.


Assuntos
Acetilglucosamina , Processamento de Proteína Pós-Traducional , Animais , Ingestão de Alimentos , Espectrometria de Massas , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...